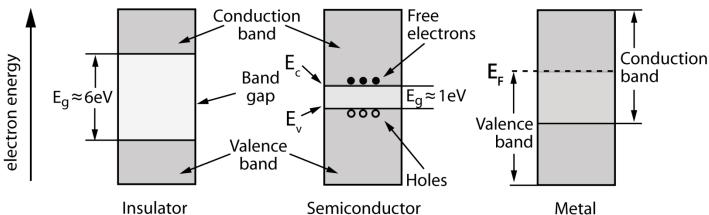
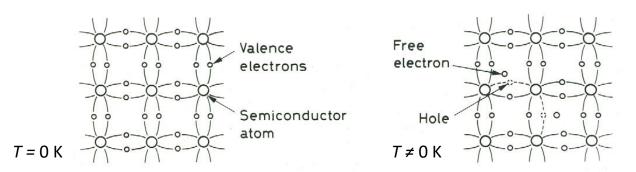
Chapter VIII: Detectors based on ionization in semiconductors


Contents

- Introduction to semiconductors
- The semiconductor junction as a detector
- Silicon detectors
- Germanium detectors
- Other semiconductor materials

Semiconductors as detectors

- Semiconductor detector → « comparable » to a gas detector in which the gaseous medium is replaced by a solid medium put between 2 electrodes
- The passage of ionizing radiation creates electron-hole pairs (instead of electron-ion pairs in gas detector) → pairs are collected by an electric field
- Semiconductor detector → solid ionization chamber
- Advantage 1 for semiconductors: energy required for one pair is \sim 3 eV \rightarrow 10 times smaller compared to gas detectors \rightarrow largely better resolution
- Advantage 2: greater density → greater stopping power → compact in size
- 1 inconvenient: except for silicon they require low temperature to operate → additional cryogenic system


Energy band structure

- Energy bands are regions of many and very close discrete levels → continuum
- Configuration due to the periodic crystal structure → overlapping of electron wavefunctions
- Energy gap is a region without energy levels at all (width: E_g)
- e⁻ in the valence band are bound with the atoms
- e⁻ in the conduction band are free
- E_F : Fermi energy (energy of the highest occupied state at T = 0 K)

Charge carriers in semiconductors (1)

- At T = 0 K, all e⁻ are in the valence band → empty conduction band → no current if an electric field is applied
- At ambient T → thermal fluctuations excite a few valence e⁻ to the conduction band (negative charge carrier) leaving a hole in its original position
- A neighboring valence e⁻ can jump from its bond to fill the hole →
 sequence can be repeated → hole (h⁺) moves through crystal →
 positive charge carrier
- Charge carriers → an electric field implies a current
- In semiconductors, two source of current: movement of free e⁻ in the conduction band and h⁺ in the valence band

Charge carriers in semiconductors (2)

- When energy is transferred to a crystal atom by a radiation incident on the semiconductor → an e⁻ can be excited to high energy levels inside the conduction band → presence of a h⁺ inside the valence band
- Very quickly after this 1^{ère} excitation → the e⁻ deexcites to the bottom of the conduction band and the ionized atom loses its excitation energy and the h⁺ stays in the top of the valence band
- The energy loss during this process gives rise to the creation of phonons and to other excitations which produce other e^--h^+ pairs \rightarrow creation of a lot of e^--h^+ pairs
- After \sim 10⁻¹² s \rightarrow all the e⁻ are in the bottom of the conduction band and all the h⁺ are in the top of valence band
- The initial energy has been shared between the $e^{-}-h^{+}$ pairs and the crystal lattice (creation of phonons) \rightarrow equivalence $e^{-}-h^{+} \leftrightarrow e^{-}$ -ions and phonons \leftrightarrow excitations by comparison with a gas

Intrinsic charge carriers concentration

• The probability that a particular level is occupied in thermal equilibrium is given by the Fermi-Dirac distribution (with k= 1.38 10⁻²³ JK⁻¹: the Boltzmann constant)

$$f(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1}$$

• e^--h^+ pairs are constantly generated by thermal energy and can also recombine \rightarrow under stable conditions \rightarrow for pure semiconductor, equilibrium concentrations of e^- and h^+ are equal: $n = p = n_i$:

$$n_i = AT^{3/2} \exp\left(\frac{-E_g}{2kT}\right)$$

with A, a constant dependent on the medium and independent on ${\cal T}$

Examples: Si and Ge

- Silicon and germanium are the 2 most common semiconductors
- Both are used as detector
- Their crystal lattice is « diamond » type

$$n_i(Si) = 2.8 \times 10^{16} T^{3/2} \exp\left(\frac{-6450}{T}\right) / \text{cm}^{-3}$$

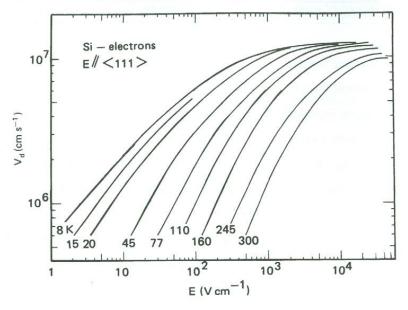
 $n_i(Ge) = 9.7 \times 10^{15} T^{3/2} \exp\left(\frac{-4350}{T}\right) / \text{cm}^{-3}$

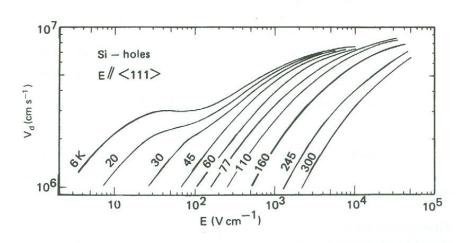
• Example \rightarrow for $T = 300 \text{ K} \rightarrow n_i(Si) = 6.7 \times 10^{10} \text{ cm}^{-3}$

Mobility for an intrinsic semiconductor

Under the action of an applied electric field E → drift velocities for e⁻ and h⁺ are

$$v_e = \mu_e E$$


$$v_h = \mu_h E$$


where $\mu_{e,h}$ are the mobilities of e^- and h^+ (depending on E and T \rightarrow for low E: μ is independent on E, for high E: μ saturates)

- Generally $\mu_h < \mu_e$ because motion of hole necessitates transition of an electron between neighboring atoms (ratio is $\approx 2-3$)
- Mobilities determine current \rightarrow conductivity σ and resistivity ρ

$$\sigma = e n_i (\mu_e + \mu_h) \qquad \rho = \frac{1}{e n_i (\mu_e + \mu_h)}$$

Examples of drift velocities: Si

Some physical properties of Si and Ge

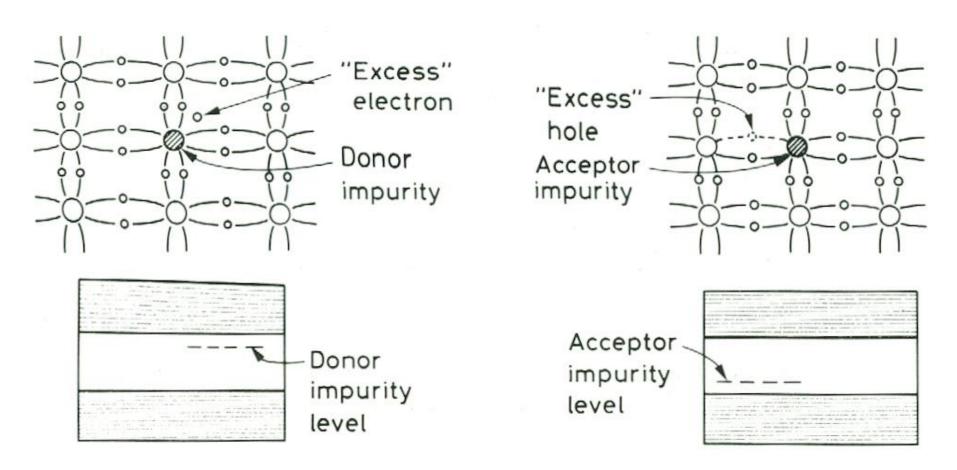
	Si	Ge
Atomic number Z	14	32
Atomic weight A	28.1	72.6
Density [g/cm ²]	2.33	5.32
Dielectric constant (relative)	12	16
Intrinsic resistivity (300 K) [Ωcm]	230000	45
Energy gap (300 K) [eV]	1.1	0.7
Energy gap (0 K) [eV]	1.21	0.785
Electron mobility (300 K) [cm ² /Vs]	1350	3900
Hole mobility (300 K) [cm ² /Vs]	480	1900

Ohmic Contacts

- An ohmic contact allows to e⁻ to travel in both directions
- When e⁻ and h⁺ are created in in equal numbers in the sc → the charges split off as a function of their sign
- Some charges arrive on their electrode before the other ones and the initially neutral medium is then charged → this space charge creates an electric field implying the injection of charge at an electrode
- In our case only e⁻ can be injected at negative electrode to maintain the equilibrium concentrations inside the sc → multiplication of the number of e⁻ and apparition of a current
- The intensity of this current is no predictable → depends on the place where the pairs are created, on the mobility of the carriers and on the geometry of the internal electric field
- No possibility of use of the sc in such conditions → use of pn junctions

Doped semiconductors: n-type

- Silicon and Germanium are tetravalent
- If a pentavalent impurity (doping) atom as arsenic, phosphorus, antimony (donor element) is introduced → replacing an atom lattice → an extra electron does not fit into the valence band
- This extra e⁻ is weakly bound → easily excited to the conduction band → localized level just below the bottom of the conduction band
- Ionization energy of this extra level: a few 0.01 eV →
 comparable to thermal energy → e⁻ in the conduction band
 without h⁺ in the valence band → n-type semiconductor
- Practically concentration of donor $N_D \gg n_i \rightarrow$ electron concentration $n \approx N_D (N_D \sim 10^{15} \text{ atoms/cm}^3) \rightarrow$


$$\sigma = eN_D\mu_e$$

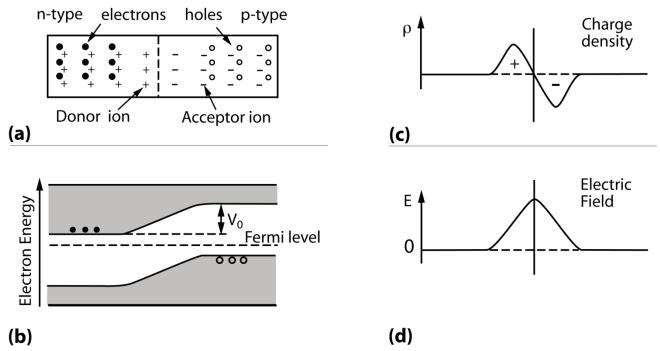
Doped semiconductors: p-type

- If a trivalent impurity atom as gallium, boron indium (acceptor element) is introduced → replacing an atom lattice → no enough electron to fill the valence band → excess of hole
- A captured e⁻ in this hole is less bound than normal e⁻ →
 localized level just above the top of the valence band
- e⁻ in the valence are easily excited to this level → extra hole in the valence band without e⁻ in the conduction band → p-type semiconductor
- Practically concentration of acceptor $N_A \gg n_i \rightarrow \text{hole}$ concentration $p \approx N_A (N_A \sim 10^{15} \text{ atoms/cm}^3) \rightarrow$

$$\sigma = eN_A\mu_h$$

Representation of doped (extrinsic) semiconductors

Extrinsic charge carriers concentration


For n-type, the added concentration of e^{-} in the conduction band $\rightarrow \nearrow$ recombination rate with holes $\rightarrow \searrow$ concentration of holes in the valence band \rightarrow at equilibrium:

$$np = n_i^2$$

Example: at room T, for Si (density of $\sim 10^{22}$ atoms/cm³), intrinsic carrier density is $\sim 10^{10}$ atoms/cm³. If donor impurities are present with a density of $\sim 10^{17}$ atoms/cm³, density of electrons n is $\sim 10^{17}$ atoms/cm³ and density of holes p is $\sim 10^3$ atoms/cm³

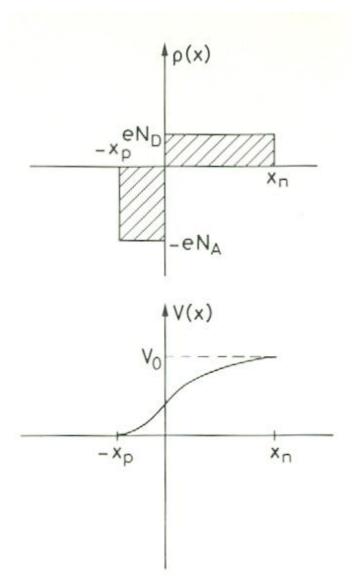
ATTENTION: Neutrality is assured by nuclei of impurities

pn semiconductor junction

 \neq density of charge \rightarrow diffusion of majority e⁻ from n-region to p-region and of majority h⁺ from p-region to n-region \rightarrow in the junction zone: recombination of e⁻ and h⁺ \rightarrow positive ions in the n-region and negative in the p-region \rightarrow electric field in this region (10³ V/cm) (called *depletion region*) \rightarrow **very small solid ionization chamber**

Depletion depth (1)

• The width of the depletion zone (= d) depends on the concentration of n and p impurities. It can be determined from Poisson's equation (with ε the dielectric constant):


$$\frac{d^2V}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

• If we consider an uniform charge distribution about the junction and with x_n and x_p the extents of the depletion zone on the n- and p-sides and a contact potential $V_0 \rightarrow$

$$\rho(x) = \begin{cases} eN_D & 0 < x < x_n \\ -eN_A & -x_p < x < 0 \end{cases}$$

• Since the charge is conserved: $N_A x_p = N_D x_n$ (with $N_A \approx p$ the acceptors concentration and $N_D \approx n$ the donors concentration)

Depletion depth (2)

Depletion depth (3)

Integrating Poisson's equation:

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}x + C_n & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}x + C_p & -x_p < x < 0 \end{cases}$$

• Since dV/dx = 0 at $x = x_n$ and $x = -x_p$:

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}(x - x_n) & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}(x + x_p) & -x_p < x < 0 \end{cases}$$

One more integration:

$$V(x) = \begin{cases} -\frac{eN_D}{\varepsilon} \left(\frac{x^2}{2} - x_n x \right) + C & 0 < x < x_n \\ \frac{eN_A}{\varepsilon} \left(\frac{x^2}{2} + x_p x \right) + C' & -x_p < x < 0 \end{cases}$$

Depletion depth (4)

• As solutions are equal at $x = 0 \rightarrow C = C'$ and as $V(x_n) = V_0$ and $V(-x_p) = 0$: $V_0 = \frac{eN_D}{2\varepsilon}x_n^2 + C$

$$0 = -\frac{eN_A}{2\varepsilon}x_p^2 + C$$

• Eliminating C:

$$V_0 = \frac{e}{2\varepsilon} (N_D x_n^2 + N_A x_p^2)$$

Using the charge conservation equation:

$$x_n = \left(\frac{2\varepsilon V_0}{eN_D[1+N_D/N_A]}\right)^{1/2} \quad \text{and} \quad x_p = \left(\frac{2\varepsilon V_0}{eN_A[1+N_A/N_D]}\right)^{1/2}$$

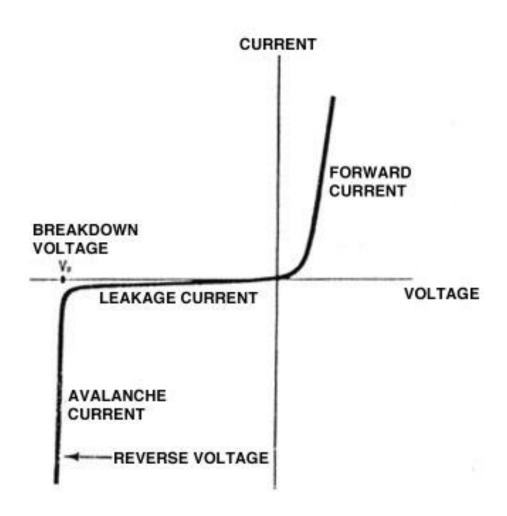
$$d = x_n + x_p$$

Depletion depth (5)

• Considering for instance $N_A \gg N_D \rightarrow x_n \gg x_p \rightarrow$

$$d \simeq x_n \simeq \left(\frac{2\varepsilon V_0}{eN_D}\right)^{1/2}$$

- Extension of the depletion zone to the n-side
- For Si with ρ = 20000 Ω cm and V_o = 1V \rightarrow $d \approx$ 75 μ m

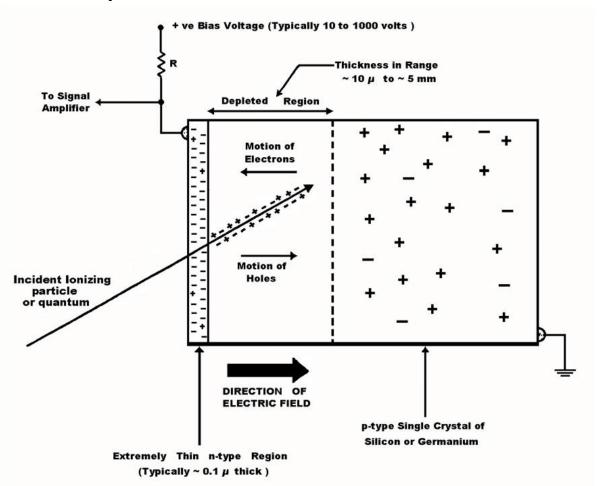

Reversed bias junction

- If an external voltage is applied that removes the potential difference (forward bias) → a current will flow → no use
- If an external bias voltage V_B is applied that re-enforces the potential difference (reverse bias) \rightarrow no current will flow
 - 1. This voltage attracts h^+ in the p-region away from the junction and similarly for the e^- in the n region \rightarrow enlarge the depletion zone (use in previous equation $V_B + V_0 \approx V_B$ because $V_B \gg V_0$) \rightarrow 5 mm in Si and 20 mm in Ge
 - 2. V_B is limited \rightarrow attention to the breakdown

Breakdown

- Breakdown of the junction → abrupt increase of the inverse current when the applied inverse voltage reach a limit value (breakdown voltage)
- The breakdown is not destructive if the inverse current is limited by an external circuit to avoid an excessive overheating
- 2 breakdown mechanisms → Zener effect and avalanche effect
- Zener effect → the electric field is intense enough to extract an electron from the valence band and to move it into the conduction band → current
- Avalanche effect \rightarrow a strongly accelerated electron can ionize an atom during a collision \rightarrow e⁻ h⁺ pair \rightarrow the number of free carriers increases and the phenomenon recurs with the initial carrier and the secondary carriers \rightarrow carriers multiplication \rightarrow current
- As a function of conditions (temperature,...) → either Zener either avalanche first occurs

Current – voltage feature

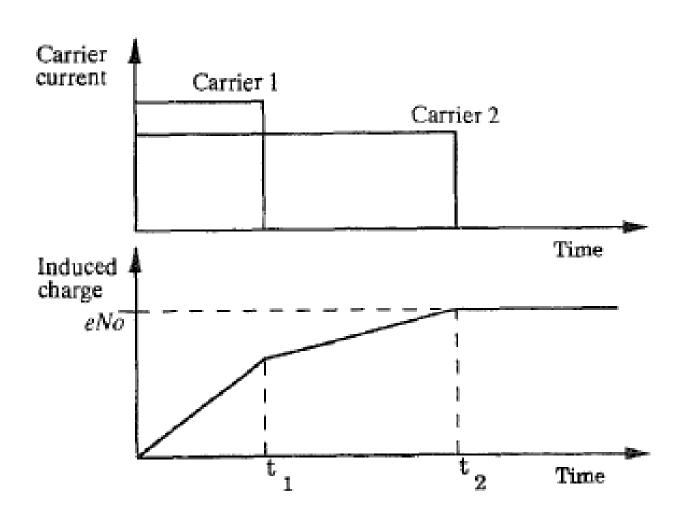


Principles of a semiconductor detector

- A radiation crossing the depletion zone of a pn junction in reverse bias creates many e⁻ h⁺ pairs
- The e⁻ drift to the positive pole and the h⁺ to the negative pole

 → apparition of a current as an ionization chamber → solid
 ionization chamber with small size
- The number of $e^ h^+$ pairs is directly ∞ to the energy given by the radiation inside the junction \rightarrow the current intensity and thus the voltage pulse over a resistance will be ∞ to this energy \rightarrow detector for both counting and spectroscopy

Principle of semiconductor Detector



Only the charges generated in the depletion layer are collected

Charge collection (1)

- When an ionizing radiation transfers its energy inside the active volume of the detector (= depletion zone) → creation of an equal number of e⁻ and h⁺
- Due to the electric field → drift of the carriers in opposite directions → the motion of the e⁻ and the h⁺ forms the current which persists until the carriers are collected at the boundary of the active volume
- Exactly the same principle as for the charge collection inside a gaseous ionization chamber with 1 difference → the time scale
- The mobility of the e⁻ is larger than the one of the h⁺ but of only a factor 2 or 3 → the collection time of the carriers are similar
- The total current includes the currents due to the 2 types of carriers

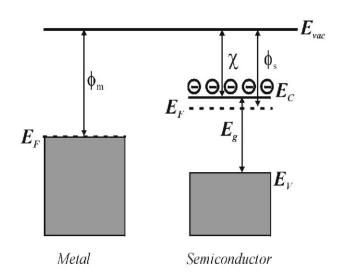
Charge collection (2)

Silicon detectors

- Operation at room temperature, except Si(Li)
- At room temperature: average energy for e⁻-h⁺ pair creation: 3.62 eV
- Disadvantage: relatively small size of the depletion zone (\approx 5 mm) \rightarrow mainly used for charged particles counting or spectroscopy (mean free path for γ too large)
- Other application → position-sensitive detector for charged particles
- Fano factor not well determined but $\approx 0.11 \rightarrow$ typical resolution for 5.5 MeV α : 3.5 keV (or 0.063%)

Different types of Si detectors

- Diffused Junction Diodes
- Surface Barrier Detector
- Ion-Implanted Diodes
- Lithium-Drifted Silicon Diodes Si(Li) p-i-n Diode
- Micro-Strip Detector

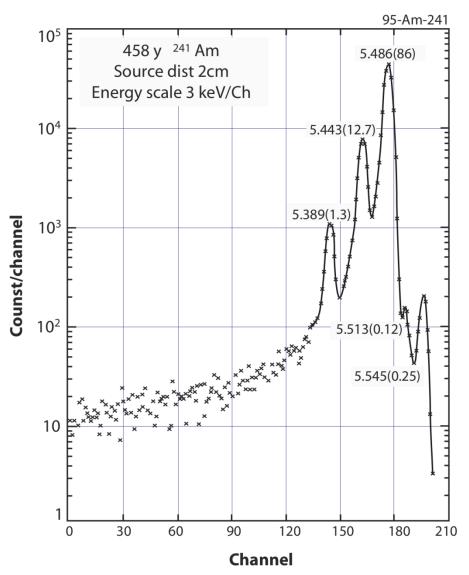

Diffused Junction Diode

- Historically: first device for detection
- We have an homogeneous crystal of p type → diffusion at high T
 (≈ 1000 °C) of n-type impurities (as phosphorous) → conversion
 of an area close of the surface into n type
- Very robust diode but surface very doped $(N_D \nearrow) \rightarrow$ extension of the depletion layer into the p-side \rightarrow presence of a thick dead layer equivalent to the diffusion area ($\approx 1~\mu m$)
- Embarrassing for the detection of charges particles → not used currently

Surface Barrier Detector (SSB)

- Most used type of silicon detector
- Junction created between a semiconductor and a metal (generally → n type Si + Au or p type Si + Al)
- Due to the ≠ between the Fermi levels of the 2 media →
 modification of the bands in the sc → formation of a Shottky
 barrier
- Depletion area which can reach ≈ 5 mm
- Advantages: easy making process + small thickness dead layer \sim thickness of the metal \sim 20 nm
- Disadvantage: very light sensitive (metal thickness too small to stop light photons) → obligatory protection + fragile
- Remark: presence of an oxide layer at the interface

Shottky barrier


a) $W \longrightarrow E_{vac}$ $\phi_{m} \longrightarrow \chi \quad \phi_{s}$ $E_{F} \longrightarrow E_{g} \longrightarrow E_{v}$ $Metal \qquad Semiconductor$

b)

- Example: metal n type sc
- When there is contact between the metal and the sc → diffusion of the e⁻ from the sc to the metal (≠ between E_F) → area located at the contact in the sc empties of the e⁻
- This area contains positive donors →
 apparition of an electric field → diffusion
 of the e⁻ is stopped
- Depletion region equivalent to the a pn contact
- 2 differences → weaker contact potential and depletion region only extended into the sc

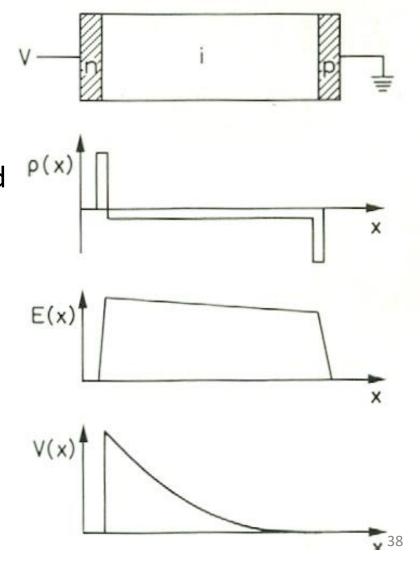
Example of measurement with a SSB

Energy spectrum of alpha particles emitted by a source of ²⁴¹Am and recorded by a surface barrier silicon detector

Ion-Implanted junction

- The sc surface (n or p type) is bombarded by an ions beam (donors or acceptors) → impurities are injected into the sc
- By adjusting the energy of the ions of the beam → monitoring of the penetration depth, of the impurities concentration and of their depth profile
- Perfect control → very stable detector, very thin dead layer (~
 35 nm) → best current detector → used particularly in physics of high energies
- Disadvantage: high price

Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (1)

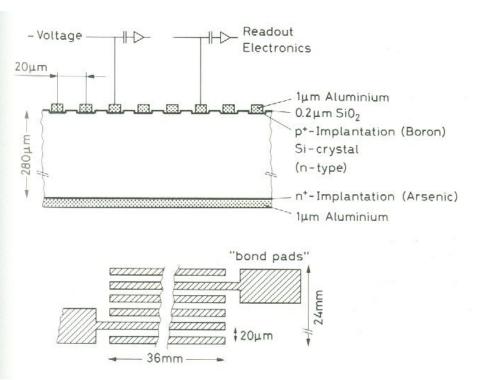

- The problem of previous diodes is the small depletion zone
- Solution → use of compensated material (i) sandwiched between p and n types coats → p-i-n
- Compensated semiconductor \rightarrow the impurities of a given type can be compensated by injection of impurities of the other type such as $N_D = N_A \rightarrow$ exactly the same quantity of donors and acceptors
- We retain most of the characteristics of intrinsic materials →
 in particular no space charge in the i zone

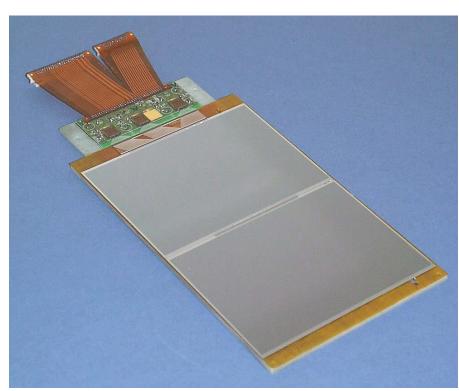
Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (2)

 No space charge → almost constant E

 The thickness of the compensated zone can reach ≈ 15 mm = zone in which the particle has to deposit its energy

• Suitable for β and (weak energy) X-ray detection


Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (3)


- We consider p-type Si
- Diffusion of lithium (donor) that compensates acceptors → Si(Li) detector
- Li is used because of its high diffusion coefficient → it does not move until lattice sites but slides up to interstices and forms a pair with p type impurities of the medium
- Problem: at room temperature → Li continue to diffuse → it
 overcomes all crystal → necessity of cooling the detector (even
 in no-use periods) → use of liquid nitrogen

Micro-Strip detector (1)

- Detector constituted of a substrate of n type Si on which a series of micro-strips of p type Si are implanted at 20 μ m intervals and linked to aluminium contacts
- The number of collected charges at a given contact is dependent on the trajectory of the incident particle
- Space resolution \approx 5 μ m

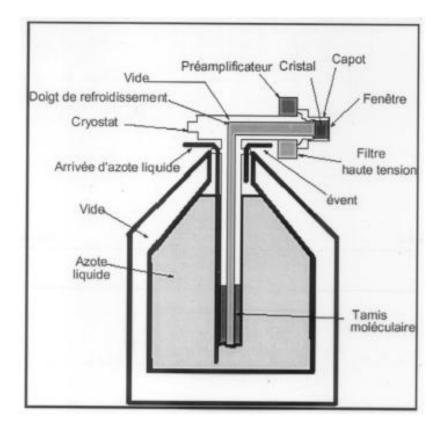
Micro-Strip detector (2)

Charged particle tracking detector used in the CMS (Compact Muon Solenoid) experiment

Germanium detectors

- Due to its small band gap (≈ 0.7 eV) → operation must be at low temperatures to prevent leakage current from thermally generated e⁻-h⁺ pairs in the depletion zone
- At 77 K (temperature of liquid nitrogen) → average energy for e⁻-h⁺ pair creation: 2.96 eV
- Large atomic number (Z_{Ge} =32 while Z_{Si} =14) \rightarrow large photoelectric cross section (60 times greater in Ge than in Si) \rightarrow mainly used for γ -ray detection
- Not often used for charged particles detection because no advantage over Si and Ge needs cooling
- Typical resolution for 1.33 MeV γ : 1.7 keV (or 0.13%) with F < 0.13
- Expensive

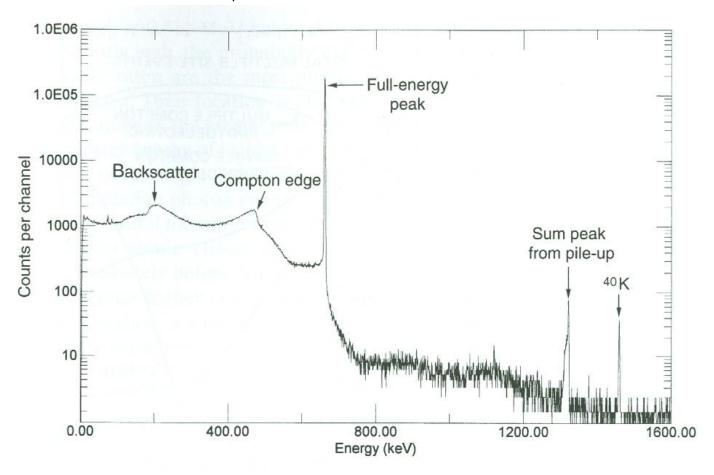
Lithium-Drifted Germanium Diodes - Ge(Li)


- Diffusion of lithium inside p type Ge → Ge(Li) detector
- In practice thickness of the compensated zone: ≈ 15-20 mm
- Due to the diffusion of Li at room temperature → necessity of continuously cooling (not only during use)
- No more used actually

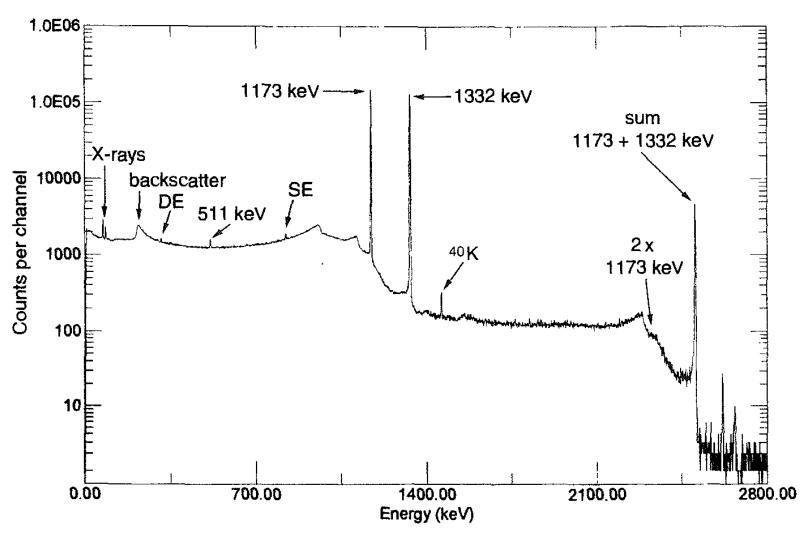
Intrinsic Germanium (High Purity Germanium: HPGe)

- Actually \rightarrow possibility to obtain high purity Ge crystals (< 10^{10} impurity atoms/cm³) \rightarrow quasi-intrinsic Ge \rightarrow development of HPGe detector (« High Purity Germanium »)
- The crystals can be p or n type according to the nature of residual impurity traces
- The junctions are carried out by doping with ion-implantation one of the faces of the quasi-intrinsic crystal which can be a very large volume
- Colling necessary only during use for radiation detection to reduce the thermal background noise and not during storage
- Frequently use for γ spectroscopy

Photo et scheme of HPGe detector with liquid nitrogen



Example of HPGe detector with electrical cooling

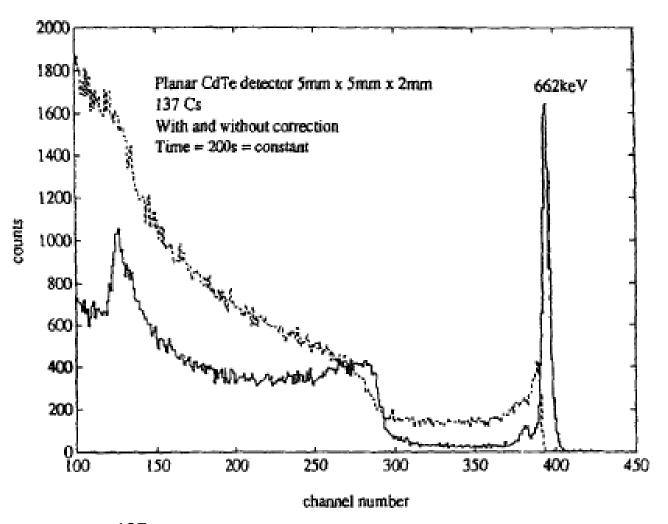

Detector HPGe Falcon 5000 from Canberra with pulsed gas tube cooling (refrigeration machine operating in closed cycle \rightarrow allow to obtain permanent cooling sources (\approx 3-120 K) by using the thermodynamic cycles of compression/relaxation of gaseous He)

Example of γ spectroscopy with HPGe (1)

Spectrum of γ rays emitted by $^{\rm 137}{\rm Cs}$ source

Example of γ spectroscopy with HPGe (2)

Spectrum of γ rays emitted by $^{60}\mathrm{Co}$ source


Other semiconductor materials

- Wish to use high performance detectors but without cooling →
 use at room temperature → low thermal background noise →
 E_g large « enough »
- Use of materials with high Z to maximize photoelectric effect for the detection of γ
- CdTe, Hgl₂, GaAs, GaSb, InSb,...

Cadmium telluride detectors (CdTe)

- High Z (Z_{Cd} = 48 and Z_{Te} = 52) \rightarrow cross section for photoelectric effect 5 \times larger than for Ge
- Energy band gap large enough (E_g = 1.52 eV) \rightarrow use at room temperature
- Poor collection efficiency of h⁺ ← capture by traps → energy resolution less good than for Si or Ge
- Trapping of e⁻ by deep acceptor levels → accumulation of the charges
 → polarization variable in time → ☐ of the charge collection and ☐ of the thickness of the depletion region → efficiency ☐
- Difficult transport of charges → limited volume
- Commercially available but expensive
- Used when the detection efficiency of high energy γ isessential

Example of γ spectroscopy with a CdTe

 γ spectrum from $^{137}{\rm Cs}$ source Possibility to electronically compensate the h+ trapping

Mercuric iodide Detectors (Hgl₂)

- High Z (Z_{Hg} = 80 and Z_{I} = 53) \rightarrow cross section for photoelectric effect 50 \times larger than for Ge \rightarrow 85% of a 100 keV photons beam is absorbed in 1 mm thick HgI₂ (for a equivalent percentage \rightarrow 10 mm Ge or 2.6 mm CdTe are needed)
- Large energy band gap ($E_g = 2.13 \text{ eV}$) \rightarrow use at room temperature with a very small thermal background noise
- Problems: weak h⁺ mobility, incomplete charge collection caused by h⁺ trapping, polarization, deterioration of the surface with time → limited resolution, limited volume, efficiency ☑ with time
- High price

CZT detector (1)

- Use of ternary compound $Cd_{1-x}Zn_xTe$ (CZT) with 0.04 < x < 0.2
- Energy band gap varying between 1.53 and 1.64 respectively
- At room temperature → very good energy resolution and large volume possible
- **BUT** 10 years ago \rightarrow
 - no polarization effect but trapping of holes at short term → asymmetry of the peaks
 - Difficulties to obtain a crystal without defect (such as metallic inclusions, grains boundary,...) → complex reproducibility

CZT detector (2)

CZT detector (3)

- Now → solution for asymmetry → use of coplanar anodes → the signal depends only on the movement of the electrons
- The flat anode electrode is replaced by a set of thin parallel strips connected alternately to two different amplifiers → two independent reading electrodes
- One set of strips (A) is brought to a slightly higher positive potential than the other set of strips (B) \rightarrow 2 effects

CZT detector (4)

- Effect 1: electrons only gather on anode A → movement of electrons near the strips induces most of the signal on anode A only
- Effect 2: movement of charges (holes in particular) at large distance from the plane of the strips induces the same signal on anodes A and B
- The difference between the signals on the two anodes (A-B)
 depends only on the movement of the electrons → signal due to
 holes disappears → asymmetry disappears for (A-B)
- Then → technological development → reproducibility ¬ → crystals between 1 and 8 cm³ → very compact
- CZT detector will be the dominant gamma detector in the next few years

Summary of applications of semiconductor detector

- Silicon detectors (generally SSB or implantation) \rightarrow principal use in spectroscopy (or detection) of charged particles (proton, α ,...) and for the determination of the trajectories of charged particles
- Germanium detectors (generally HPGe) \rightarrow principal use for detection and spectroscopy of γ rays
- CZT detector \rightarrow detection and spectroscopy of γ rays for nuclear medicine