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Semiconductors as detectors

• Semiconductor detector → « comparable » to a gas detector in 
which the gaseous medium is replaced by a solid medium put 
between 2 electrodes

• The passage of ionizing radiation creates electron-hole pairs (instead 
of electron-ion pairs in gas detector) → pairs are collected by an 
electric field

• Semiconductor detector → solid ionization chamber

• Advantage 1 for semiconductors: energy required for one pair is » 3 
eV → 10 times smaller compared to gas detectors → largely better 
resolution

• Advantage 2: greater density → greater stopping power → compact 
in size

• 1 inconvenient: except for silicon they require low temperature to 
operate → additional cryogenic system
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Energy band structure

• Energy bands are regions of many and very close discrete levels → 
continuum

• Configuration due to the periodic crystal structure → overlapping of 
electron wavefunctions

• Energy gap is a region without energy levels at all (width: Eg)

• e- in the valence band are bound with the atoms

• e- in the conduction band are free

• EF: Fermi energy (energy of the highest occupied state at T = 0 K)
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Charge carriers in semiconductors (1)

• At T = 0 K, all e- are in the valence band→ empty conduction band → 
no current if an electric field is applied

• At ambient T → thermal fluctuations excite a few valence e- to the 
conduction band (negative charge carrier) leaving a hole in its original 
position

• A neighboring valence e- can jump from its bond to fill the hole → 
sequence can be repeated → hole (h+) moves through crystal → 
positive charge carrier

• Charge carriers → an electric field implies a current

• In semiconductors, two source of current: movement of free e- in the 
conduction band and h+ in the valence band
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Charge carriers in semiconductors (2)

• When energy is transferred to a crystal atom by a radiation incident on the 
semiconductor → an e- can be excited to high energy levels inside the 
conduction band → presence of a h+ inside the valence band

• Very quickly after this 1ère excitation → the e- deexcites to the bottom of the 
conduction band and the ionized atom loses its excitation energy and the h+

stays in the top of the valence band

• The energy loss during this process gives rise to the creation of phonons 
and to other excitations which produce other e--h+ pairs → creation of a lot 
of e--h+ pairs

• After » 10-12 s → all the e- are in the bottom of the conduction band and all 
the h+ are in the top of valence band

• The initial energy has been shared between the e--h+ pairs and the crystal 
lattice (creation of phonons) → equivalence e--h+ e--ions and phonons 

excitations by comparison with a gas 6



• The probability that a particular level is occupied in thermal 
equilibrium is given by the Fermi-Dirac distribution (with k= 
1.38 10-23 JK-1: the Boltzmann constant)

• e--h+ pairs are constantly generated by thermal energy and 
can also recombine → under stable conditions → for pure 
semiconductor, equilibrium concentrations of e- and h+ are 
equal: n = p = ni:

with A, a constant dependent on the medium and 
independent on T

Intrinsic charge carriers concentration
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Examples: Si and Ge

• Silicon and germanium are the 2 most common semiconductors 

• Both are used as detector 

• Their crystal lattice is « diamond » type

• Example → for T = 300 K → ni(Si) = 6.7 £ 1010 cm-3
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Mobility for an intrinsic semiconductor

• Under the action of an applied electric field E → drift velocities for 
e- and h+ are  

where ¹e,h are the mobilities of e- and h+ (depending on E and T → 
for low E: ¹ is independent on E, for high E: ¹ saturates)

• Generally ¹h < ¹e because motion of hole necessitates transition  of 
an electron between neighboring atoms (ratio is ≈ 2-3)

• Mobilities determine current → conductivity ¾ and resistivity ½
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Examples of drift velocities: Si
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Some physical properties of Si and Ge
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Ohmic Contacts

• An ohmic contact allows to e- to travel in both directions

• When e- and h+ are created in in equal numbers in the sc → the charges 
split off as a function of their sign 

• Some charges arrive on their electrode before the other ones and the 
initially neutral medium is then charged → this space charge creates an 
electric field implying the injection of charge at an electrode

• In our case only e- can be injected at negative electrode to maintain the 
equilibrium concentrations inside the sc → multiplication of the number 
of e- and apparition of a current 

• The intensity of this current is no predictable → depends on the place 
where the pairs are created, on the mobility of the carriers and on the 
geometry of the internal electric field

• No possibility of use of the sc in such conditions → use of pn junctions
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Doped semiconductors: n-type

• Silicon and Germanium are tetravalent

• If a pentavalent impurity (doping) atom as arsenic, phosphorus, 
antimony (donor element) is introduced → replacing an atom 
lattice → an extra electron does not fit into the valence band

• This extra e- is weakly bound → easily excited to the 
conduction band → localized level just below the bottom of the 
conduction band

• Ionization energy of this extra level: a few 0.01 eV → 
comparable to thermal energy → e- in the conduction band 
without h+ in the valence band → n-type semiconductor

• Practically concentration of donor NDÀ ni → electron 
concentration n ≈ ND (ND»1015 atoms/cm3) →
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Doped semiconductors: p-type

• If a trivalent impurity atom as gallium, boron indium (acceptor 
element) is introduced → replacing an atom lattice → no 
enough electron to fill the valence band → excess of hole

• A captured e- in this hole is less bound than normal e- → 
localized level just above the top of the valence band

• e- in the valence are easily excited to this level → extra hole in 
the valence band without e- in the conduction band → p-type 
semiconductor

• Practically concentration of acceptor NAÀ ni → hole 
concentration p ≈ NA (NA »1015 atoms/cm3) →
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Representation of doped (extrinsic) semiconductors 
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Extrinsic charge carriers concentration

For n-type, the added concentration of e- in the conduction 
band → recombination rate with holes → concentration 
of holes in the valence band → at equilibrium:

Example: at room T, for Si (density of »1022 atoms/cm3), 
intrinsic carrier density is »1010 atoms/cm3. If donor 
impurities are present with a density of »1017 atoms/cm3, 
density of electrons n is »1017 atoms/cm3 and density of holes 
p is »103 atoms/cm3
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pn semiconductor junction

≠ density of charge → diffusion of majority e- from n-region to p-region
and of majority h+ from p-region to n-region → in the junction zone:
recombination of e- and h+ → positive ions in the n-region and negative
in the p-region → electric field in this region (103 V/cm) (called depletion
region) → very small solid ionization chamber
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Depletion depth (1)

• The width of the depletion zone (= d) depends on the concentration 
of n and p impurities. It can be determined from Poisson’s equation 
(with ε the dielectric constant): 

• If we consider an uniform charge distribution about the junction and 
with xn and xp the extents of the depletion zone on the n- and p-
sides and a contact potential V0 →

• Since the charge is conserved: NAxp = NDxn (with NA ≈ p the acceptors 
concentration and ND ≈ n the donors concentration)
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Depletion depth (2)
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Depletion depth (3)

• Integrating Poisson’s equation:

• Since dV/dx = 0 at x = xn and x = -xp:

• One more integration:
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Depletion depth (4)

• As solutions are equal at x = 0 → C = C’ and as V(xn) = V0 and       
V(-xp) = 0:

• Eliminating C:

• Using the charge conservation equation:
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Depletion depth (5)

• Considering for instance NAÀ ND → xnÀ xp →

• Extension of the depletion zone to the n-side

• For Si with ½ = 20000 Ωcm and V0 = 1V → d ≈ 75 μm
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Reversed bias junction

• If an external voltage is applied that removes the potential 
difference (forward bias) → a current will flow → no use

• If an external bias voltage VB is applied that re-enforces the 
potential difference (reverse bias) → no current will flow 

1. This voltage attracts h+ in the p-region away from the junction and 
similarly for the e- in the n region → enlarge the depletion zone (use 
in previous equation VB+V0 ≈ VB because VBÀ V0) → 5 mm in Si and 
20 mm in Ge

2. VB is limited → attention to the breakdown
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Breakdown

• Breakdown of the junction → abrupt increase of the inverse current 
when the applied inverse voltage reach a limit value (breakdown 
voltage)

• The breakdown is not destructive if the inverse current is limited by 
an external circuit to avoid an excessive overheating

• 2 breakdown mechanisms → Zener effect and avalanche effect

• Zener effect → the electric field is intense enough to extract an 
electron from the valence band and to move it into the conduction 
band → current

• Avalanche effect → a strongly accelerated electron can ionize an 
atom during a collision → e- - h+ pair → the number of free carriers 
increases and the phenomenon  recurs with the initial carrier and the  
secondary carriers → carriers multiplication → current

• As a function of conditions (temperature,…) → either Zener either 
avalanche first occurs
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Current – voltage feature
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Principles of a semiconductor detector

• A radiation crossing the depletion zone of a pn junction in 
reverse bias creates many e- - h+ pairs

• The e- drift to the positive pole and the h+ to the negative pole 
→ apparition of a current as an ionization chamber → solid 
ionization chamber with small size

• The number of e- - h+ pairs is directly / to the energy given by 
the radiation inside the junction → the current intensity and 
thus the voltage pulse over a resistance will be / to this energy 
→ detector for both counting and spectroscopy
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Principle of semiconductor Detector

Only the charges generated in the depletion layer are collected
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Charge collection (1)

• When an ionizing radiation transfers its energy inside the active 
volume of the detector (= depletion zone) → creation of an 
equal number of e- and h+

• Due to the electric field → drift of the carriers in opposite 
directions → the motion of the e- and the h+ forms the current 
which persists until the carriers are collected at the boundary 
of the active volume 

• Exactly the same principle as for the charge collection inside a 
gaseous ionization chamber with 1 difference → the time scale

• The mobility of the e- is larger than the one of the h+ but of 
only a factor 2 or 3 → the collection time of the carriers are 
similar

• The total current includes the currents due to the 2 types of 
carriers 
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Charge collection (2)
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Silicon detectors

• Operation at room temperature, except Si(Li)

• At room temperature: average energy for e--h+ pair creation: 3.62 eV

• Disadvantage: relatively small size of the depletion zone (≈ 5 mm) → 
mainly used for charged particles counting or spectroscopy (mean 
free path for ° too large)

• Other application → position-sensitive detector for charged particles 

• Fano factor not well determined but ≈ 0.11 → typical resolution for 
5.5 MeV ®: 3.5 keV (or 0.063%)
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Different types of Si detectors

• Diffused Junction Diodes

• Surface Barrier Detector

• Ion-Implanted Diodes

• Lithium-Drifted Silicon Diodes – Si(Li) – p-i-n Diode

• Micro-Strip Detector
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Diffused Junction Diode

• Historically: first device for detection 

• We have an homogeneous crystal of p type → diffusion at high T 
(≈ 1000 °C) of n-type impurities (as phosphorous) → conversion 
of an area close of the surface into n type

• Very robust diode but surface very doped (ND ) → extension of 
the depletion layer into the p-side → presence of a thick dead 
layer equivalent to the diffusion area (≈ 1 ¹m)

• Embarrassing for the detection of charges particles → not used 
currently
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Surface Barrier Detector (SSB)

• Most used type of silicon detector

• Junction created between a semiconductor and a metal 
(generally → n type Si + Au or p type Si + Al) 

• Due to the ≠ between the Fermi levels of the 2 media → 
modification of the bands in the sc → formation of a Shottky
barrier

• Depletion area which can reach ≈ 5 mm

• Advantages: easy making process + small thickness dead layer »
thickness of the metal » 20 nm 

• Disadvantage: very light sensitive (metal thickness too small to 
stop light photons) → obligatory protection + fragile

• Remark: presence of an oxide layer at the interface
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Shottky barrier

• P

34

• Example: metal – n type sc

• When there is contact between the
metal and the sc → diffusion of the e-

from the sc to the metal (≠ between EF) 
→ area located at the contact in the sc
empties of the e-

• This area contains positive donors  → 
apparition of an electric field → diffusion 
of the e- is stopped

• Depletion region equivalent to the a pn
contact

• 2 differences → weaker contact potential 
and depletion region only extended into 
the sc



Example of measurement with a SSB 
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Energy spectrum of 
alpha particles emitted 
by a source of 241Am and 
recorded by a surface 
barrier silicon detector



Ion-Implanted junction

• The sc surface (n or p type) is bombarded by an ions beam 
(donors or acceptors)  → impurities are injected into the sc

• By adjusting the energy of the ions of the beam → monitoring 
of the penetration depth, of the impurities concentration and 
of their depth profile

• Perfect control → very stable detector, very thin dead layer (»
35 nm) → best current detector → used particularly in physics 
of high energies

• Disadvantage: high price
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Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (1)

• The problem of previous diodes is the small depletion zone 

• Solution → use of compensated material (i) sandwiched 
between p and n types coats → p-i-n

• Compensated semiconductor → the impurities of a given type 
can be compensated by injection of impurities of the other 
type such as ND = NA → exactly the same quantity of donors 
and acceptors

• We retain most of the characteristics of intrinsic materials → 
in particular no space charge in the i zone
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Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (2)

• No space charge → almost 
constant E

• The thickness of the compensated 
zone can reach ≈ 15 mm = zone in 
which the particle has to deposit 
its energy

• Suitable for ¯ and (weak energy) 
X-ray detection
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Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (3)

• We consider p-type Si 

• Diffusion of lithium (donor) that compensates acceptors → 
Si(Li) detector

• Li is used because of its high diffusion coefficient → it does not 
move until lattice sites but slides up to interstices and forms a 
pair with p type impurities of the medium

• Problem: at room temperature → Li continue to diffuse → it  
overcomes all crystal → necessity of cooling the detector (even 
in no-use periods) → use of liquid nitrogen
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Micro-Strip detector (1)

• Detector constituted of a substrate of n type Si on which a 
series of micro-strips of p type Si are implanted at 20 ¹m 
intervals and linked to aluminium contacts 

• The number of collected charges at a given contact is 
dependent on the trajectory of the incident particle

• Space resolution ≈ 5 ¹m
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Micro-Strip detector (2)
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Charged particle tracking detector used in the 
CMS (Compact Muon Solenoid ) experiment



Germanium detectors

• Due to its small band gap (≈ 0.7 eV) → operation must be at low 
temperatures to prevent leakage current from thermally generated 
e--h+ pairs in the depletion zone

• At 77 K (temperature of liquid nitrogen) → average energy for e--h+

pair creation: 2.96 eV

• Large atomic number (ZGe=32 while ZSi=14) → large photoelectric 
cross section (60 times greater in Ge than in Si) → mainly used for 
°-ray detection 

• Not often used for charged particles detection because no 
advantage over Si and Ge needs cooling 

• Typical resolution for 1.33 MeV °: 1.7 keV (or 0.13%) with F < 0.13

• Expensive
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Lithium-Drifted Germanium Diodes - Ge(Li)

• Diffusion of lithium inside p type Ge → Ge(Li) detector

• In practice thickness of the compensated zone: ≈ 15-20 mm 

• Due to the diffusion of Li at room temperature → necessity of 
continuously cooling (not only during use)

• No more used actually 
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Intrinsic Germanium (High Purity Germanium: HPGe)

• Actually → possibility to obtain high purity Ge crystals (< 1010

impurity atoms/cm3) → quasi-intrinsic Ge → development of 
HPGe detector (« High Purity Germanium »)

• The crystals can be p or n type according to the nature of residual 
impurity traces 

• The junctions are carried out by doping with ion-implantation one 
of the faces of the quasi-intrinsic crystal which can be a very large 
volume 

• Colling necessary only during use for radiation detection to 
reduce the thermal background noise and not during storage

• Frequently use for ° spectroscopy
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Photo et scheme of HPGe detector with liquid nitrogen
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Example of HPGe detector with electrical cooling

46

Detector HPGe Falcon 5000 from Canberra with pulsed gas tube cooling 
(refrigeration machine operating in closed cycle → allow to obtain 
permanent cooling sources (≈ 3-120 K) by using the thermodynamic 
cycles of compression/relaxation of gaseous He)



Example of ° spectroscopy with HPGe (1)

47

Spectrum of ° rays emitted by 137Cs source



Example of ° spectroscopy with HPGe (2)

48Spectrum of ° rays emitted by 60Co source



Other semiconductor materials

• Wish to use high performance detectors but without cooling → 
use at room temperature → low thermal background noise → 
Eg large « enough » 

• Use of materials with high Z to maximize photoelectric effect 
for the detection of °

• CdTe, HgI2, GaAs, GaSb, InSb,…
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Cadmium telluride detectors (CdTe)

• High Z (ZCd = 48 and ZTe = 52) → cross section for photoelectric effect 5 
£ larger than for Ge 

• Energy band gap large enough (Eg = 1.52 eV) → use at room 
temperature 

• Poor collection efficiency of h+ capture by traps → energy 
resolution less good than for Si or Ge 

• Trapping of e- by deep acceptor levels → accumulation of the charges 
→ polarization variable in time → of the charge collection and 
of the thickness of the depletion region → efficiency 

• Difficult transport of charges → limited volume 

• Commercially available but expensive

• Used when the detection efficiency of high energy ° isessential
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Example of ° spectroscopy with a CdTe
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° spectrum from 137Cs source
Possibility to electronically compensate the h+ trapping



Mercuric iodide Detectors (HgI2)

• High Z (ZHg = 80 and ZI = 53) → cross section for photoelectric 
effect 50 £ larger than for Ge → 85% of a 100 keV photons 
beam is absorbed in 1 mm thick HgI2 (for a equivalent 
percentage → 10 mm Ge or 2.6 mm CdTe are needed)

• Large energy band gap (Eg = 2.13 eV) → use at room 
temperature with a very small thermal background noise

• Problems: weak h+ mobility, incomplete charge collection caused 
by h+ trapping, polarization, deterioration of the surface with 
time → limited resolution, limited volume, efficiency with 
time

• High price
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CZT detector (1)

• Use of ternary compound Cd1-xZnxTe (CZT) with 0.04 < x < 0.2

• Energy band gap varying between 1.53 and 1.64 respectively

• At room temperature → very good energy resolution and 
large volume possible

• BUT 10 years ago →
– no polarization effect but trapping of holes at short term → 

asymmetry of the peaks

– Difficulties to obtain a crystal without defect (such as metallic 
inclusions, grains boundary,…) → complex reproducibility
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CZT detector (2)
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CZT detector (3)

• Now → solution for asymmetry → use of coplanar anodes → 
the signal depends only on the movement of the electrons 

• The flat anode electrode is replaced by a set of thin parallel 
strips connected alternately to two different amplifiers → two 
independent reading electrodes

• One set of strips (A) is brought to a slightly higher positive 
potential than the other set of strips (B) → 2 effects
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CZT detector (4)

• Effect 1 : electrons only gather on anode A → movement of electrons 
near the strips induces most of the signal on anode A only

• Effect 2 : movement of charges (holes in particular) at large distance 
from the plane of the strips induces the same signal on anodes A and 
B

• The difference between the signals on the two anodes (A-B)  
depends only on the movement of the electrons → signal due to 
holes disappears → asymmetry disappears for (A-B)

• Then → technological development → reproducibility → crystals 
between 1 and 8 cm3 → very compact

• CZT detector will be the dominant gamma detector in the next few 
years



Summary of applications of semiconductor detector

• Silicon detectors (generally SSB or implantation) → principal 
use in spectroscopy (or detection) of charged particles (proton, 
®,…) and for the determination of the trajectories of charged 
particles

• Germanium detectors (generally HPGe) → principal use for 
detection and spectroscopy of ° rays

• CZT detector → detection and spectroscopy of ° rays for
nuclear medicine
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